

Renewable Energy (RE) policies

Policy Mechanisms to promote RE

- Grants and Rebates
- Tax Credits
- Competitive Tenders and Auctions
- Tradable Renewable Energy Certificates
- Renewable Portfolio Standards and Quota systems
- Net Metering
- Feed-In Tariff (FIT)
- Competing or combining policies
 FITs are the most widely used policy mechanism globally

Feed-In-Tariff Definition

Feed-in Tariff (FIT):

 A renewable energy policy that offers a guarantee of payment to renewable energy developers for the electricity they produce.

3

Feed-in tariffs go by many names

- Advanced Renewable Tariffs
 - A system of feed-in tariffs (prices or payments) for different technologies
- Renewable Energy Payments
 - Because the "tariffs" are a payment per kilowatt-hour of electricity generated
- Standard Offer Contracts
 - Feed-in tariffs use "standard contracts" and "standard offers"
 - "offers" may differ by technology (one price for solar, another for wind)
- Also called fixed-price policies, minimum price policies, feed laws, feed-in laws, renewable and energy dividends

Access to the grid: Interconnection

Connectivity should be:

- Guarantee and on priority
- Simple, timely, and at reasonable cost

5

W₆

Priority Purchase

- Renewable energy must be first priority
 - Must run status
 - Take or pay contracts
- Producer must be assured that the electricity they produce is purchased
- Only exception is "system emergencies"

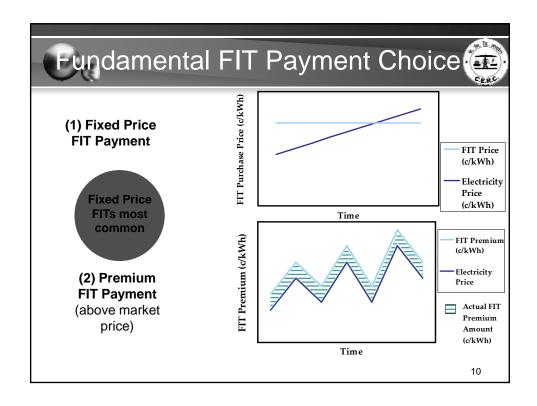
Contract Length

- Tariff levels are usually guaranteed for a longer period
 - 20 years or more
 - Longer contracts = lower initial tariff
 - Shorter contracts = higher initial tariffs
- Standardized Contract (Model PPA)

In this way FiT provides long-term certainty about receiving financial support, which is considered to lower investment risks

7

Specific Tariff Design

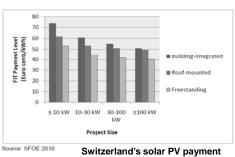


- Differentiated by technology
 - wind, solar, biomass, hydro, etc.
- Differentiated by project size
 - higher prices for small projects
 - lower prices for large projects
- Differentiated by resources qualities
- Differentiated by application
 - higher prices for rooftop solar, BIPV
- Differentiated by project location

- Pre determined tariff degression
- Responsive tariff degression
- Annual inflation adjustment
- Front-end loading (i.e., higher tariffs initially, lower tariffs later on)
- Time of delivery (coincidence with demand to encourage peak shaving)

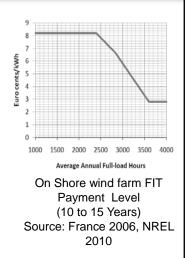
Front loading payment stream

- Instead of having a constant tariff level for the complete support duration, it can be considered to increase tariffs for the first years of a project while decreasing tariffs in the last years.
- It can help to reduce financing cost without increasing the total sum of financial support,.


11

Differentiation by Project Size

(i.e., kW or MW Capacity)


- Lowest payment level is typically offered to the largest plants
- Reflecting the gains that result from economies of scale
- Differentiating FiT payments by project size is another means of offering FiT payments that reflect actual project costs
- E.g.: France, Germany, Switzerland, and Italy provide the highest tariff amounts for the smallest PV installations

- Different payments to projects in areas with a different cost of production
 - to encourage development in a wider variety of areas, which can bring a number of benefits both to the grid and to society
 - to match the payment levels as closely as possible to RE generation costs
 - For e.g. areas with a high-quality wind resource will produce more electricity from the same capital investment, all else being equal, leading to a lower levelized cost (FIT)

Denmark, France, Germany, Portugal, and Switzerland have implemented resource adjusted payment levels

13

Differentiation by Project Location

- Varied payments to projects mounted in different physical locations (without regard to resource quality)
 - To encourage project development in particular applications,
 - To encourage multi-functionality (e.g. solar PV),
 - Target particular owner types such as homeowners,
 - To meet a number of other policy goals

System Location	Payment Level (€ cents/kWh)
BIPV on recently constructed ⁴² residential buildings, schools, & health facilities	58
BIPV (on other recently constructed buildings)	50
Simplified BIPV	42
Freestanding PV (>250 kW) ⁴³	31.4
Source: France 2010a	

France FIT Payment Differentiation by Location for PV Systems (2010)14

- Used to keep tariffs in line with evolving cost realities through decreases in the payment level, at either specific points in time, or as capacity targets are reached
- Fixed annual percentage declines, or According to a "responsive" formula that allows the rate of degression to respond to the rate of market growth
 - Degression rates will be greater for rapidly evolving RE technologies such as PV
 - Degression creates greater investor security by removing the uncertainty associated with annual program revisions and adjustments

Project Size	Degression for Landfill Gas Facilities in Germany (Germany RES Act 2008) Payment levels (€ cents/kWh) Based on an annual degression of 1.5%									
	2009	2009 2010 2011 2012 2013 2014								
0-500 kW	9.00	9.00 8.87 8.73 8.60 8.47 8.34								
500 kW-5 MW	6.16	6.07	5.98	5.89	5.80	5.71				

- Degression is adjusted according to the rate of market growth (Germany RES Act 2008)
- In Germany's case, if the annual installed PV capacity in a given year exceeds a certain amount, the percentage rate of annual degression is increased by 1%; if it falls short of a certain annual installed capacity, the degression rate is decreased by 1% German Responsive Degression Rates

Year	Market Condition (this year)	Next year's annual degression rate
	< 1,000 MW installed	Declines 1% (e.g. 8% to 7%)
2009: Between 1,000-1,500 MW installed		No change
	1,500+ MW installed	Increases 1% (e.g. 8% to 9%)
	< 1,100 MW installed	Declines 1% (e.g. 8% to 7%)
2010	Between 1,100-1,700 MW installed	No change
	1,700+ MW installed	Increases 1% (e.g. 8% to 9%)
	< 1,200 MW installed	Declines 1% (e.g. 8% to 7%)
2011	Between 1,200-1,900 MW installed	No change
	1,900+ MW installed	Increases 1% (e.g. 8% to 9%)

Inflation Protection

- Feed-In Tariffs are index linked to the Retail Prices Index (RPI),
 which means the tariff is subject to inflation
 - Protects invested capital
- Higher protection = lower initial tariffs
- Prices adjusted periodically
 - For new projects
 - Inside existing contracts
- Inflation indexing often less than 100%
 - France & Spain: 50% to 70% indexing

Greater protection offered on the value of project revenues, adjusting FITs for inflation can reduce the perceived risk of the policy for investors

17

Periodic Review

Reviews every 2-5 years enables to:

- Determines if targets being met
- Allows price adjustment
 - If profits are too high
 - If targets are not being met
- Allows addition of new technologies

Fiscal and other support incentives

- Direct production incentives/Generation Based Incentive
- Investment subsidies
- Low-interest loans
- Loan guarantees
- Flexible/accelerated depreciation schemes
- Investment or production tax exemptions

19

Advantages of FIT Policies

- Offer a secure and stable market for investors
- Stimulate significant and quantifiable growth of local industry and job creation
- Only cost money if projects actually operate (i.e. Fits are performance-based)
- Provide lower transaction costs
- Can secure the fixed-price benefits of RE generation for the utility's customers by acting as a hedge against volatility

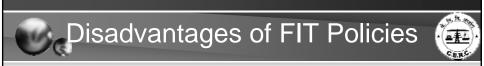
Advantages of FIT Policies

- Settle uncertainties related to grid access and interconnection
- Enhance market access for investors and participants
- Predictable revenues : Enable traditional financing
- Encourage technologies at different stages of maturity,
 including emerging technologies
- Customize the policy to support various market conditions, including regulated and competitive markets

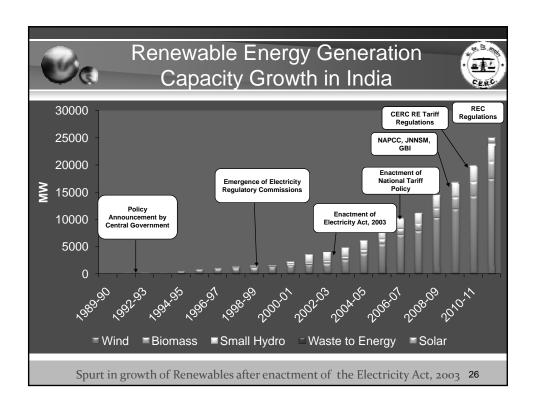
21

Other benefits are that FIT policie

- Have a measurable impact on RE generation and capacity
- Tailor the policies using a range of design elements that will achieve a wide range of policy goals
- Are compatible with RPS mandates
- Can help utilities meet their RPS mandates
- Can provide a purchase price to renewable energy generators that is not linked to avoided costs
- Demonstrate a flexible project-specific design that allows for adjustments to ensure high levels of cost & efficiency


- FITs can lead to near-term upward pressure on electricity prices, particularly if they lead to rapid growth in emerging (i.e., higher-cost) RE technologies
- FITs may distort wholesale electricity market prices
- FITs do not directly address the high up-front costs of RE technologies – instead, they are generally designed to offer stable revenue streams over a period of 15-25 years, which enables the high up-front costs to be amortized over time

23


Disadvantages of FIT Policies

- Due to the fact that RE investments are generally limited to citizens with disposable (i.e. investable) income, as well as with property on which to install RE systems, FITs may exclude lower-income individuals from participating because these individuals are generally required to share the cost burden via higher bills, this can create or exacerbate social inequity
- FITs do not encourage direct price competition between project developers

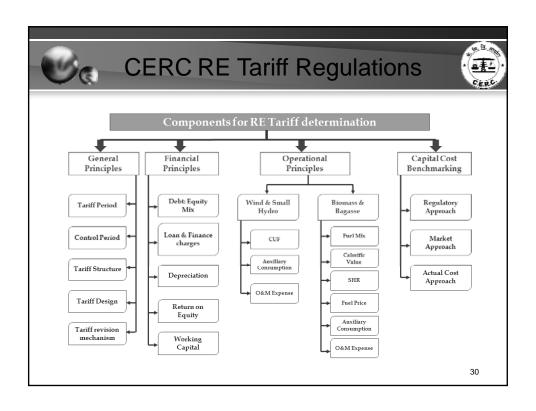
- It may be difficult to control overall policy costs under FIT policies, because it is difficult to predict the rate of market uptake without intermediate caps or capacity-based degression
- It can be challenging to incorporate FITs within existing policy frameworks and regulatory environments
- FITs are not "market-oriented," primarily because FITs often involve must-take provisions for the electricity generated, and the payment levels offered are frequently independent from market price signals

Regulatory Intervention

- Renewable Purchase Obligation (RPO)
- Preferential Tariff
- Facilitative Framework for Grid Connectivity
- Market Development (Tradable Renewable Energy Certificates)

27

Regulatory Instrument for promotion of RE in India



- RPO along with Preferential tariff was the main instrument until 2010
- RPO with Preferential tariff and Renewable
 Energy Certificate (REC) are the instrument s for promotion of RE in India

REGULATORY INITIATIVE:

PREFERENTIAL TARIFF

Levellised tariff

- Generic tariff on levellised basis for the Tariff Period
- RE technologies having fuel usage :
 - Single part tariff with two components: Fixed and variable
 - Tariff shall be determined on levellised basis for fixed cost component
 - While the fuel cost component shall be specified on year of operation basis
- For the purpose of levellised tariff computation, the discount factor equivalent to Post Tax weighted average cost of capital
- Levellisation to be carried out for the 'useful life'

A balanced approach vis a vis concerns of front loaded tariff, back loaded tariff etc.

31

Generic v/s Project specific tariff

- Provision for project specific tariff on case to case basis, for new RE technologies like:
 - Municipal Solid Waste to Energy Projects
 - Hybrid Solar Thermal Power plants
 - Hybrid options (i.e. renewable–renewable or renewable– conventional sources)
 - Any other new renewable energy technologies as approved by MNRE

The financial norms specified for determination of Generic Tariff except for capital cost, would be ceiling norms while determining the project specific tariff

Tariff Period

□Wind, Biomass, Bagasse based cogeneration projects:13 years

- Regulatory support during the 13 year tariff period will provide certainty to the project developer to meet its debt service obligations
- After this period, the competitive procurement of RE will ensure that power is procured at most reasonable rate, and benefit passed on the consumer

□Small hydro projects below 5 MW: 35 years

□Solar PV and Solar thermal power projects: 25 years

☐Biomass Gasifier and Biogas based power projects: 20 years

Longer duration of tariff support in view of smaller size/nascent technologies

-22

Capital Cost Benchmarking

- Various approaches are evaluated for development of benchmark capital cost for different RE technologies
 - Regulatory Approach: Norms as approved by various SERCs are most simple and easy to follow
 - Market Based Approach: Project awarded through competitive tender process carried out by public and private entities
 - Actual Project Cost Approach: Information furnished by developers as a part of project appraisal requirements to various financial institutions/banks to avail loan or to UNFCCC for registering the project to avail CDM benefits
 - International Project Cost based Approach

Subsequently suitable indexation mechanism devised to consider the year on year variation for the underlying capital cost parameters

Financial Principles

- Debt : Equity Ratio considered at 70 : 30. For project specific tariff,
 - In case of equity funding in excess of 30%, to be treated as normative loan.
 - In case of equity funding lower than 30%, actual equity to be considered.

Return on Equity

- Value base at 30% of capital cost or actual equity (whichever is lower).
- Pre-tax ROE: 19% p.a. for first 10 years and 24% p.a. from 11th year onwards.

Loan Terms

- Tenure of loan considered as 12 years.
- Interest rate: SBI Base rate + 300 basis points

Depreciation

- 'Differential depreciation' approach over loan period & 'Straight Line' method over the remaining useful life.
- Allowed upto 90% of capital cost considering salvage value as 10%.
- On SLM basis at 5.83 % p.a. for first 12 years and remaining depreciation to be spread over balance useful life of asset.

35

Financial Principles

Useful Life

Wind Energy : 25 years
 Biomass power / cogeneration : 20 years
 Small hydro power : 35 years
 Solar PV and Solar thermal : 25 years

Sharing of CDM benefits

- Share of developer to be 100% for 1st year after COD.
- Share of beneficiary to be 10% in second year to be increased progressively at 10% per year till it reaches 50%.
- Thereafter, sharing shall be on equal proportion basis.

Financial Principles

Working Capital

Technology	O&M expense	Receivables	Maintenance spares	Fuel cost
Wind/ Small Hydro/ Solar	1 Month	2 Month	15% of O&M expense	
Biomass/ Non- fossil Fuel Co- generation	1 Month	2 Month	15% of O&M expense	4 months of fuel stock at normative PLF

Interest rate equivalent to average SBI Base rate plus 350 basis points

37

TECHNOLOGY SPECIFIC PARAMETERS

Eligibility Criteria:

➤ New Wind energy projects

Capital Cost:

- > Rs 575 Lakh/MW for first year of Control Period (FY 2012-13)
- > Linked to indexation mechanism over Control Period

O&M expense:

 $\,\succ\,$ Rs 9 Lakh/MW for first year of Control Period (FY 2012-13 with escalation at 5.72% / annum

Capacity Utilization Factor:

Annual Mean Wind Power Density (W/m²)	CUF
Up to 200	20%
201-250	22%
251300	25%
301-400	30%
> 400	32%

Small Hydro Projects

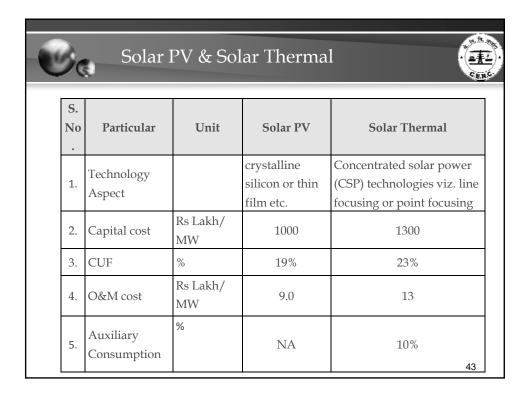
S. No.	Particular	Unit	Description
1.	Capital cost		
	Himanchal Pradesh and Uttarakhand (Below 5 MW)	Rs Lakh/ MW	770
	Himanchal Pradesh and Uttarakhand (5 MW to 25 MW)	Rs Lakh/ MW	700
	Other States (Below 5 MW)	Rs Lakh/ MW	600
	Other States (5 MW to 25 MW)	Rs Lakh/ MW	550
2.	Capacity Utilisation Factor (CUF)		
	Himanchal Pradesh and Uttarakhand	%	45%
	Other States	%	30%
3.	O&M cost		
	Himanchal Pradesh and Uttarakhand (Below 5 MW)	Rs Lakh/ MW	25
	Himanchal Pradesh and Uttarakhand (5 MW to 25 MW)	Rs Lakh/ MW	18
	Other States (Below 5 MW)	Rs Lakh/ MW	20
	Other States (5 MW to 25 MW)	Rs Lakh/ MW	14
4.	Auxiliary Consumption 40	%	1%

Biomass Power Projects

Eligibility Criteria:

➤ Biomass power projects based on Rankine cycle technology and using biomass fuel sources, provided use of fossil fuel is restricted only to 15% of total fuel consumption on annual basis.

S. No.	Particular	Unit	Description
1	Capital Cost	Rs Lakh/MW	450
2	Plant Load Factor		
	1st yr during stabilization	%	60%
	remaining period of the 1st yr	%	70%
	Next year onward	%	80%
3	Auxiliary Consumption	%	10
4	Station Heat Rate	kCal/kWh	4000
5	O&M Expenses	Rs Lakh/MW	24



Non- Fossil Fuel Based Co-generation

S. No.	Particular	Unit	Description
1.	Capital Cost	Rs Lakh/MW	420
2.	Auxiliary Consumption	%	8.5
3.	Station Heat Rate	kCal/kWh	3600
4.	O&M Expenses	Rs Lakh/MW	15
5.	Plant Load Factor	Operating days	PLF
	Uttar Pradesh and Andhra Pradesh	180 days	45%
	Tamil Nadu and Maharashtra	240 days	60%
	Other States	210 days	53%
6	GCV	kCal/kg	2250 42

W ₆	Wind						
	Annual Mean WPD (W/m2) at 50 mtr HH	CUF	2009-10 `/kWh	2010-11 `/kWh	2011-12 `/kWh		
Zone-1	200-250	20%	5.63	5.07	5.33		
Zone-2	250-300	23%	4.90	4.41	4.63		
Zone-3	300-400	27%	4.70	3.75	3.95		
Zone-4	> 400	30%	3.75	3.38	3.55		
	WPD at 80 mtr		2012-13 `/kWh				
Zone-1	Upto 200	20%	5.96				
Zone-2	200-250	22%	5.42				
Zone-3	250-300	25%	4.77				
Zone-4	300-400	29%	3.97				
Zone-5	> 400	32%	3.73		45		

Small Hydro Power							
	09-10	10-11	11-12	12-13	Diff.		
HP, Uttarakhand and NE States (Below 5MW) `/kWh	3.90	3.59	3.78	4.14	0.36		
HP, Uttarakhand and NE States (5MW to 25 MW) `/kWh	3.35	3.06	3.22	3.54	0.32		
Other States (Below 5 MW) `/kWh	4.62	4.26	4.49	4.88	0.39		
Other States (5MW to 25 MW) `/kWh	4.00	3.65	3.84	4.16	0.32		
					46		

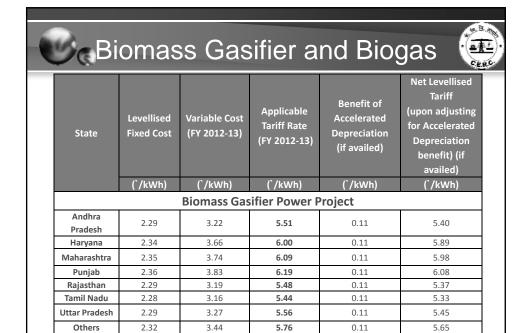
Biomass Power Project

Capital Cost: Capital Cost:	Difference						
	2011-12 2012-13 `/kWh `/kWh						
Andhra Pradesh	3.78	5.18	1.40				
Haryana	4.97	5.65	0.68				
Maharashtra	4.31	5.74	1.43				
Punjab	4.94	5.83	0.89				
Rajasthan	4.28	5.16	0.88				
Tamil Nadu	4.58	5.12	0.54				
Uttar Pradesh	4.06	5.24	1.18				
Others	4.41	5.42	1.01				

Non-Fossil Fuel based Cogeneration

Bagasse based Co-generation: `/kWh Capital Cost: `4.21 Crore/MW (FY11-12) Capital Cost: `4.20 Crore/MW (FY12-13)						
States	09-10 `/kWh	10-11 `/kWh	11-12 `/kWh	12-13 `/kWh	`/kWh	
Andhra Pradesh	4.93	4.23	4.51	5.06	0.55	
Haryana	5.78	4.86	5.21	5.73	0.52	
Maharashtra	4.80	4.05	4.34	5.42	1.08	
Punjab	5.75	4.84	5.19	5.30	0.11	
Tamil Nadu	5.10	4.29	4.60	4.61	0.01	
Uttar Pradesh	5.21	4.45	4.76	5.35	0.59	
Others	5.17	4.38	4.68	5.20	0.52	
	•	•		•	48	

Biogas


3.06

Solar PV & Thermal

Technology	2009-10 `/kWh	2010-11 `/kWh	2011-12 `/kWh	2012-13 `/kWh	Diff. `/kWh
Solar PV CC: ` 14.42 Cr/MW (FY11-12) CC: ` 10 Cr/MW (FY12-13)	18.44	17.91	15.39	10.39	-5.00
Solar Thermal CC: `15 Cr/MW (FY11-12) CC: `13 Cr/MW (FY12-13)	13.45	15.31	15.04	12.46	-2.58

49

Biogas based power project

6.44

0.21

6.23

COMPETITIVE BIDDING FOR TARIFF DISCOVERY

51

Reverse bidding experience : Solar

Bid discount from reference tariff (CERC determined Tariff)

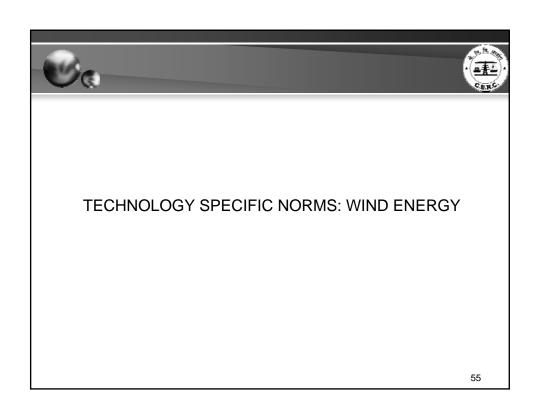
- Target for Phase I (2013): 1000 MW
- Batch –I: 620 MW capacity tied up through Competitive bidding
 - 37 bidders selected through reverse bidding auction
 - 470 MW Solar Thermal & 150 MW Solar PV

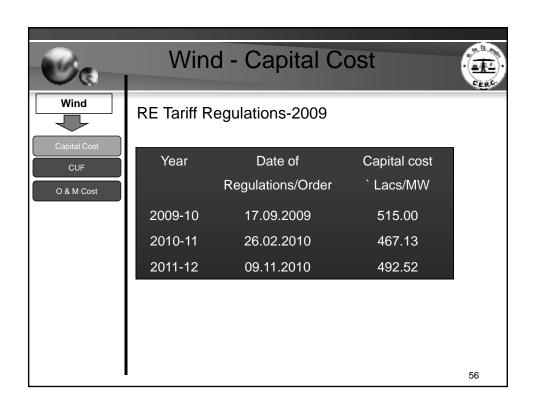
Solar Thermal: Rs. 10.49 to 12.24/kWhSolar PV: Rs. 10.95 to 12.75/kWh

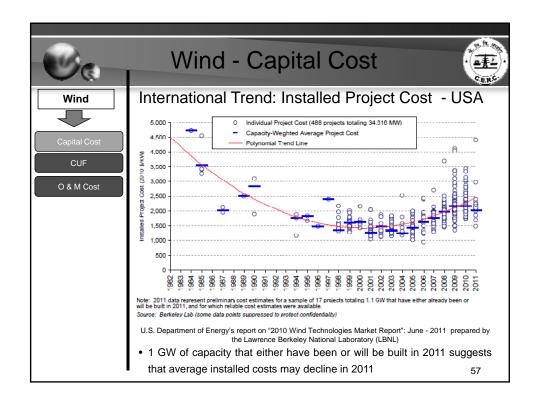
- Batch II: 345 MW Solar PV capacity tied up through Competitive bidding
 - 26 bidders selected through reverse bidding auction: Discount offered in CERC tariff
 - Solar PV: Rs. 7.49 to 9.39/kWh

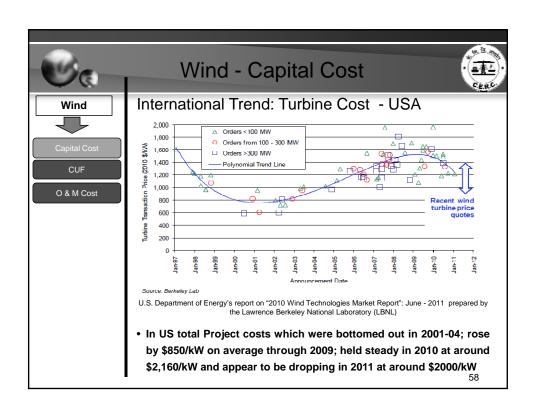
Issues and Way Forward

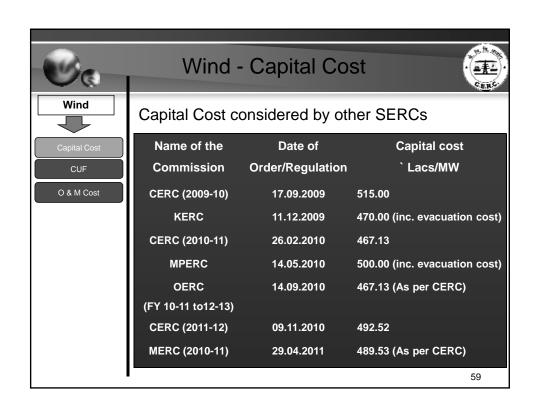
□Issues

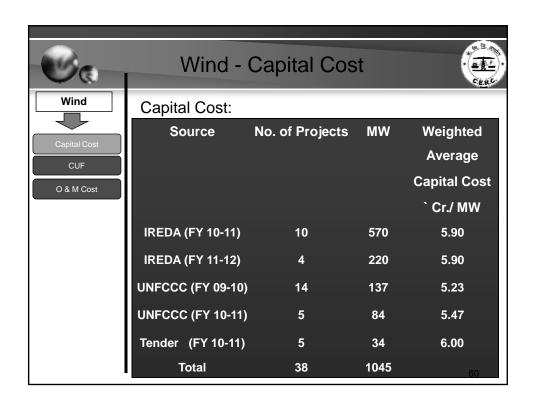

- □ Competitive procurement of renewable energy
 - ☐ Whether competitive bidding the right strategy for infirm RE technologies ?
- ☐ Should FiT co-exist with REC
- ■Way Forward
 - □ Bidding Guidelines being issued
 - □REC mechanism being reviewed

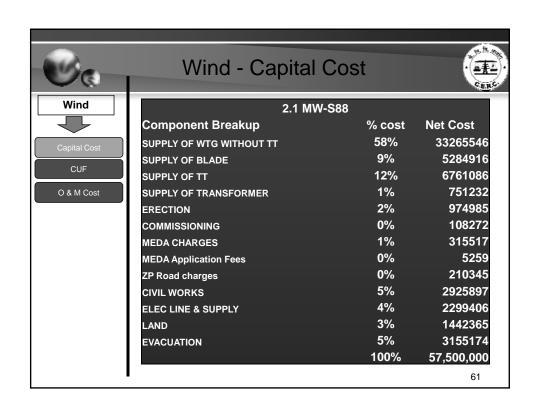

53

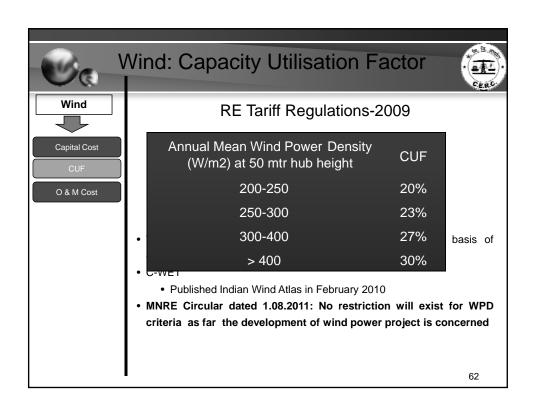


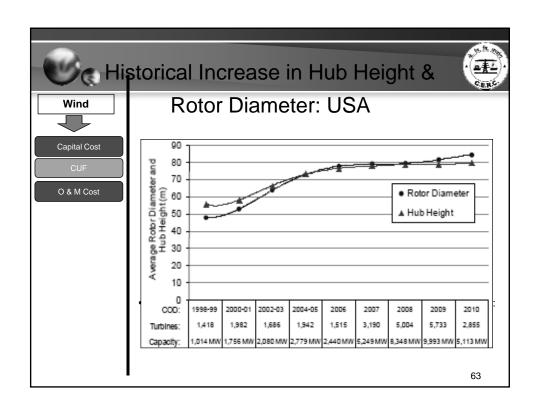

www.cercind.gov.in

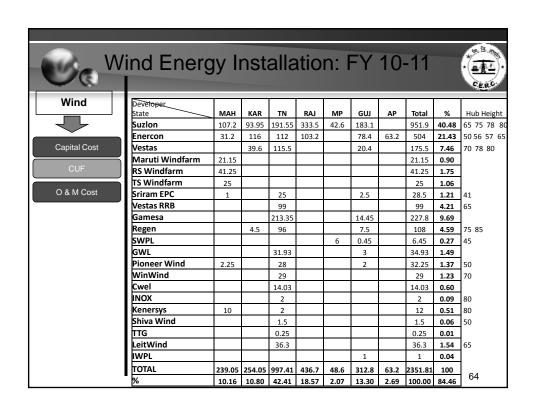

Central Electricity Regulatory Commission 3rd &4th Floor, Chanderlok Building 36, Janpath,New Delhi - 110 001 Phone: 011 2335 3503

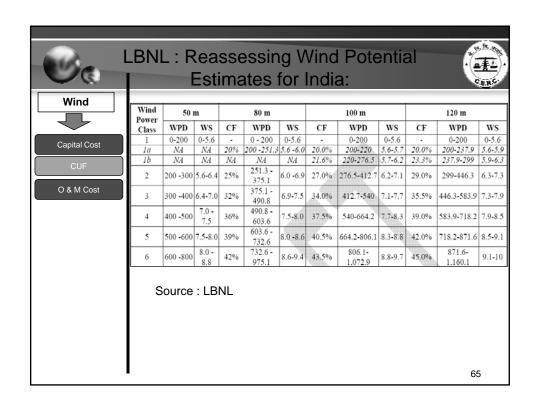


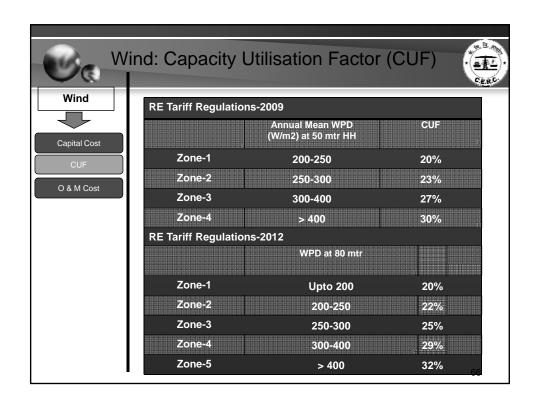


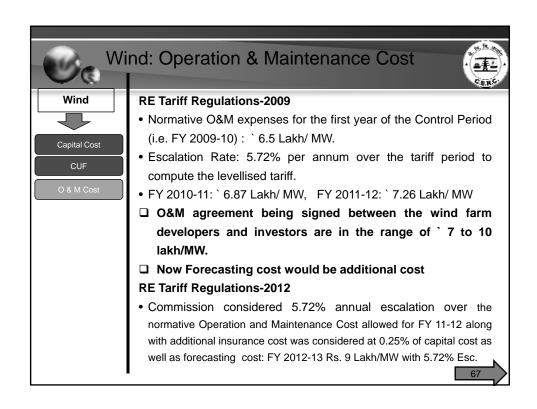


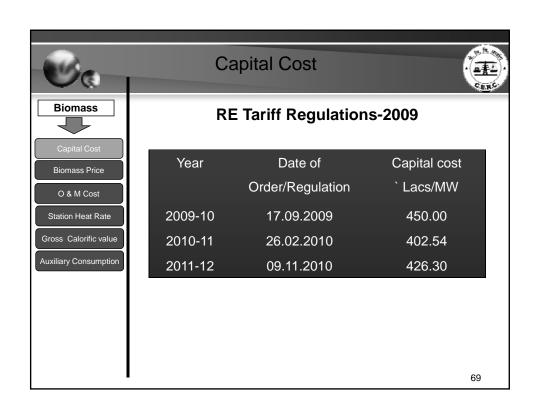


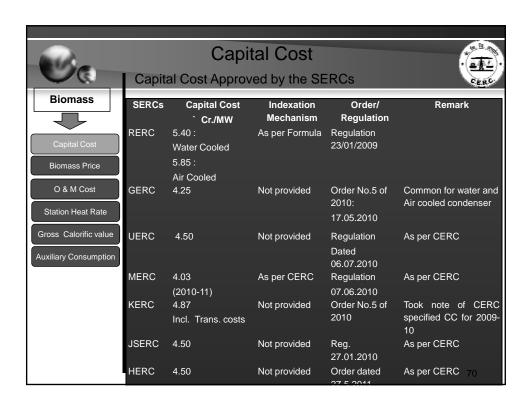


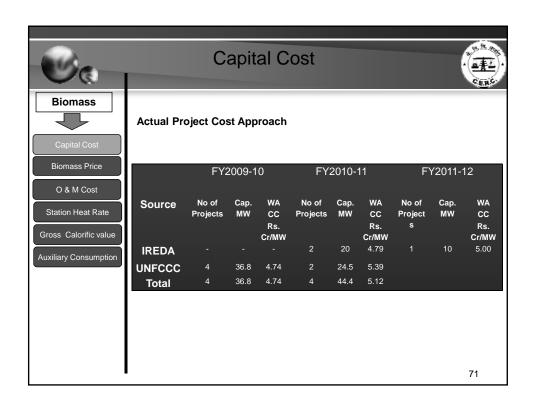


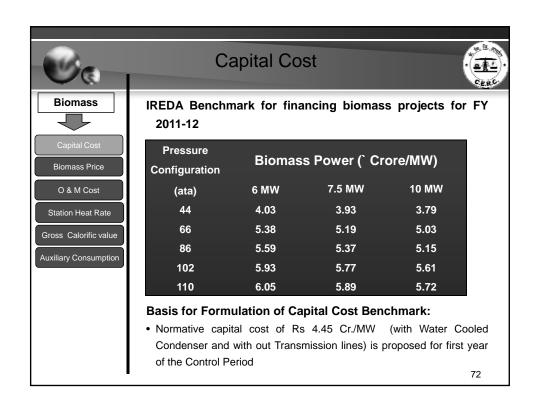


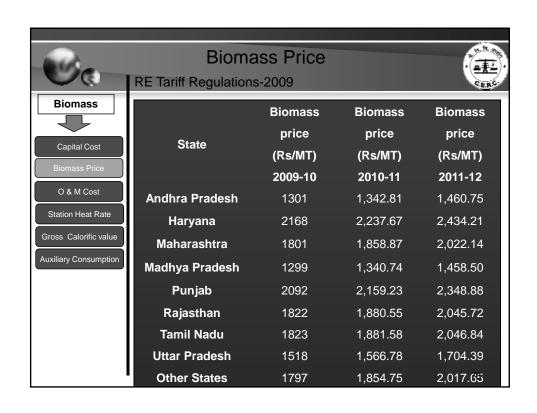


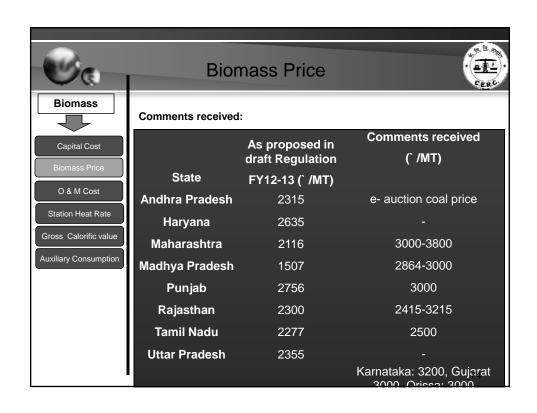


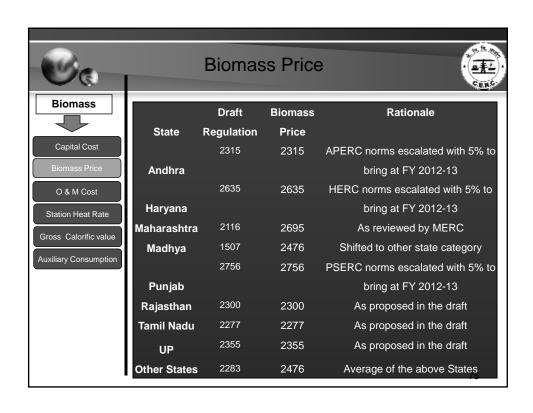


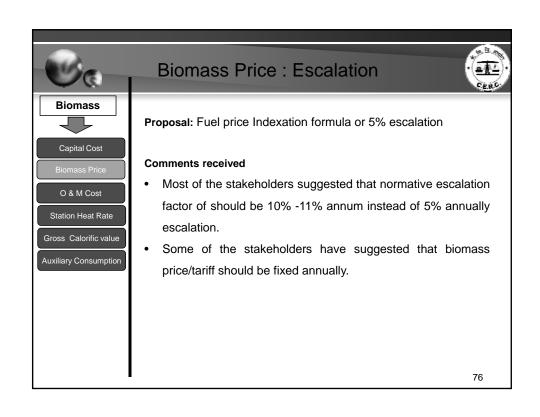


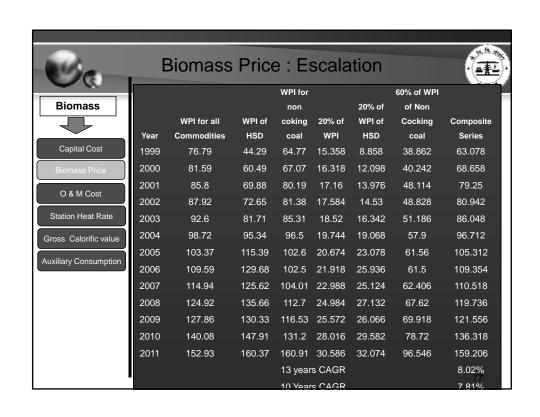

TECHNOLOGY SPECIFIC NORMS:

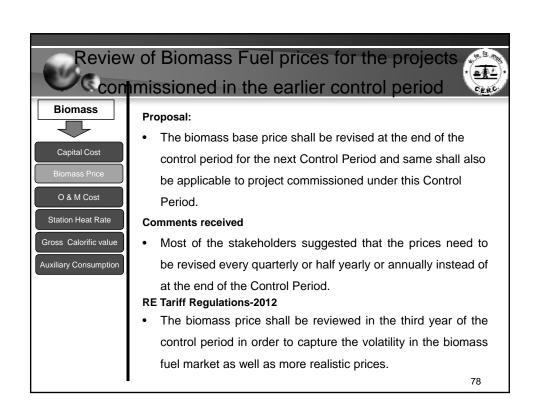

Biomass Based Power Projects with Rankine Cycle Technology

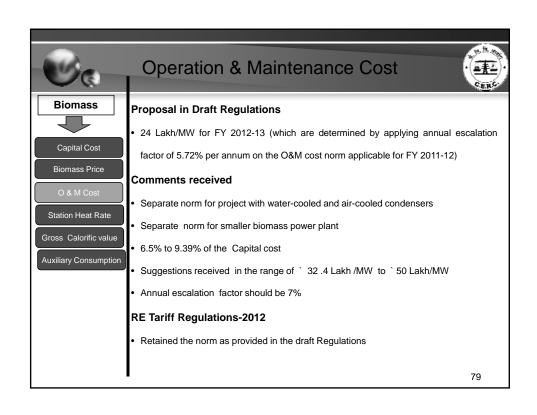


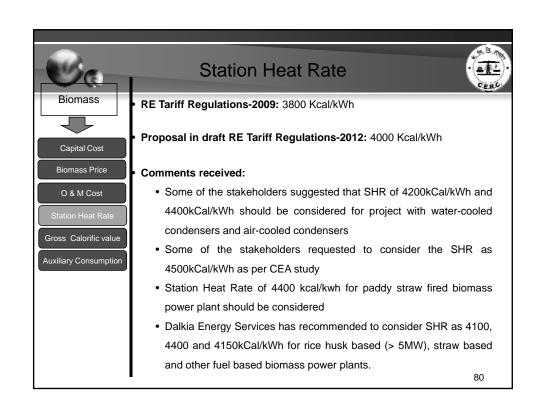


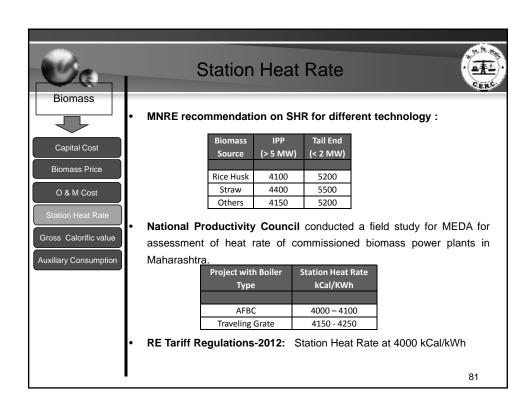


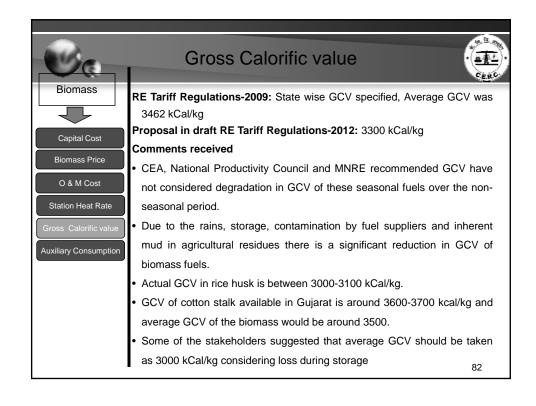


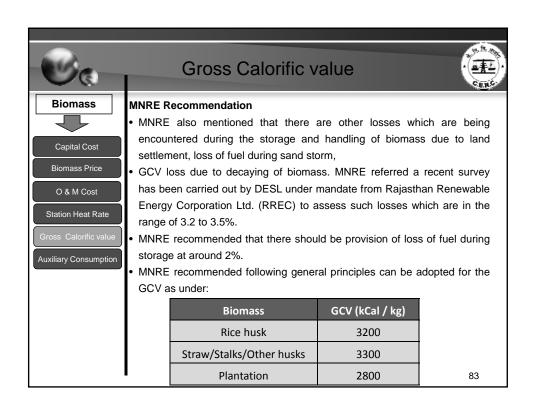


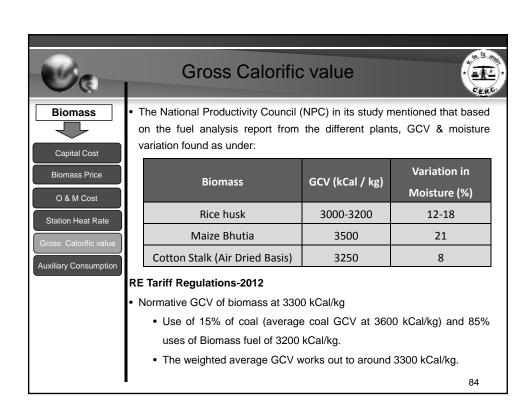


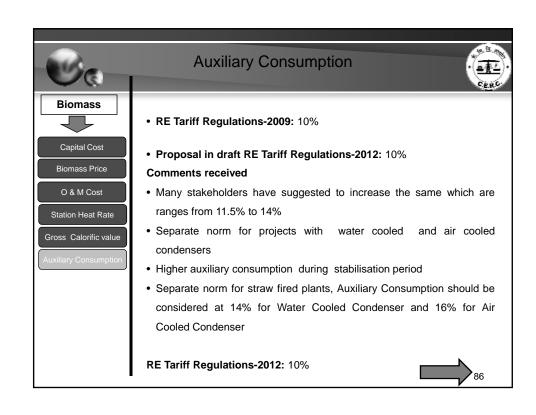












Electricity Exported & Fuel Consumed:

SI. no	Month	Gross Generation (Kwh)	Auxiliary Consumpti on* (Kwh)	Net Export to Grid (Kwh)	Power Import (Kwh)	Net Export (After Deductio n of Power Import) (Kwh)	Biomass Fuel Consume d (MT)	Foss il Fuel Used (MT)
1	Apr - 08	5398157	490532	4907625	3600	4904025	7023	0
2	May - 08	4753965	487740	4266225	21975	4244250	6342	0
3	Jun - 08	5081085	502785	4578300	8850	4569450	6782	0
4	July-08	3926579	378329	3548250	35700	3512550	4992	0
5	Aug- 08	5133753	494103	4639650	7950	4631700	6413	0
6	Sep - 08	4882806	449931	4432875	7275	4425600	6007	0
7	Oct - 08	2439300	224100	2215200	48750	2166450	3144	0
8	Nov - 08	5614229	458579	5155650	225	5155425	6822	0
9	Dec - 08	5382093	418143	4963950	10200	4953750	6781	0
10	Jan – 09	5401171	421396	4979775	6900	4972875	7026	0
11	Feb - 09	4781205	384555	4396650	7050	4389600	6177	0
12	Mar - 09	5442503	447953	4994550	5625	4988925	6995	0
	Total	58236846	5158146	53078700	164100	52914600	74504	0

As per above data SFC: 1.27 kg/kWh
As per our proposal SHR 4000 kCal/kWh GCV : 3200 Kcal/kg: SFC: 1.25 kg/kWh

